Selective Two-Photon Absorptive Resonance Femtosecond- Laser Electronic-Excitation Tagging (STARFLEET) Velocimetry in Flow and Combustion Diagnostics
نویسندگان
چکیده
Selective Two-Photon Absorptive Resonance Femtosecond-Laser Electronic-Excitation Tagging (STARFLEET), a non-seeded ultrafast-laser-based velocimetry technique, is demonstrated in reactive and non-reactive flows. STARFLEET is pumped via a two-photon resonance in N2 using 202.25-nm 100-fs light. STARFLEET greatly reduces the per-pulse energy required (30 μJ/pulse) to generate the signature FLEET emission compared to the conventional FLEET technique (1.1 mJ/pulse). This reduction in laser energy results in less energy deposited in the flow, which allows for reduced flow perturbations (reactive and nonreactive), increased thermometric accuracy, and less severe damage to materials. Velocity measurements conducted in a free jet of N2 and in a premixed flame show good agreement with theoretical velocities and further demonstrate the significantly less-intrusive nature of STARFLEET.
منابع مشابه
New diagnostic methods for laser plasma- and microwave-enhanced combustion.
The study of pulsed laser- and microwave-induced plasma interactions with atmospheric and higher pressure combusting gases requires rapid diagnostic methods that are capable of determining the mechanisms by which these interactions are taking place. New rapid diagnostics are presented here extending the capabilities of Rayleigh and Thomson scattering and resonance-enhanced multi-photon ionizati...
متن کاملMorphology-dependent resonance induced by two-photon excitation in a micro-sphere trapped by a femtosecond pulsed laser.
We report on the measurement of morphology-dependent resonance within a laser-trapped micro-sphere excited under two-photon absorption. Both trapping and two-photon excitation are simultaneously achieved by a single femtosecond pulsed laser beam. The effect of the laser power as well as the pulse width on the transverse trapping force is first investigated. The dependence of two-photon-induced ...
متن کاملHigh-Repetition-Rate Imaging of Atomic Oxygen In Flames
Two-photon laser-induced fluorescence (TPLIF) is a well-recognized approach for detecting atomic oxygen however, measurements to date have been restricted to a single point within a flow, flame, or plasma, due to the inherently high intensity requirements for the excitation laser. Furthermore, the high-intensity ultraviolet (UV) photons used for two-photon excitation process can photochemically...
متن کاملTwo-photon coherent control of femtosecond photoassociation.
Photoassociation with short laser pulses has been proposed as a technique to create ultracold ground state molecules. A broad-band excitation seems the natural choice to drive the series of excitation and deexcitation steps required to form a molecule in its vibronic ground state from two scattering atoms. First attempts at femtosecond photoassociation were, however, hampered by the requirement...
متن کاملSimultaneous identification of multi-combustion-intermediates of alkanol-air flames by femtosecond filament excitation for combustion sensing
Laser filamentation produced by the propagation of intense laser pulses in flames is opening up new possibility in application to combustion diagnostics that can provide useful information on understanding combustion processes, enhancing combustion efficiency and reducing pollutant products. Here we present simultaneous identification of multiple combustion intermediates by femtosecond filament...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016